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ABSTRACT 

Geographically co-located sensors tend to participate in the same 
environmental phenomena. Phenomenon-aware stream query 
processing improves scalability by subscribing each query only to 
a subset of sensors that participate in the phenomena of interest to 

that query. In the case of sensors that generate readings with a 
multi-attribute schema, phenomena may develop across the values 
of one or more attributes. However tracking and detecting 
phenomena across all attributes does not scale well as the 
dimensions increase. As the size of sensor network increases, and 
as the number of attributes being tracked by a sensor increases 
this becomes a major bottleneck. In this paper, we present a novel 
n-dimensional Phenomenon Detection and Tracking mechanism 

(termed as nd-PDT) over n-ary sensor readings. We reduce the 
number of dimensions to be tracked by first dropping dimensions 
without any meaningful phenomena, and then we further reduce 
the dimensionality by continuously detecting and updating various 
forms of functional dependencies amongst the phenomenon 
dimensions. 

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems - Query processing; 
H.2.8 [Database Management]: Database Applications - Spatial 
databases and GIS;  

General Terms 

Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 

Data Streams, Query Processing, DSMS, Sensors Networks 

1. INTRODUCTION 
With the advances in sensor network technology and with the 
growing ubiquity of sensor deployments, large amounts of sensor 
data is readily gathered; yet processing this data efficiently and 
accurately still poses significant challenges. Phenomenon-aware 
query processing [1][2] alleviates this problem by taking into 
consideration the fact that although sensor data exhibit 

tremendous variations in reading values globally across the entire 
region of a sensor network, sensor readings tend to be similar 
across geographically co-located sensors over a period of time. 
The domain of Phenomenon-aware query processing addresses 
the challenges in; (a) the continuous detection and tracking of 

phenomena as they appear, move, and disappear from the sensor 
field, and (b) the optimization of subsequent user queries using 
the detected phenomenon. The two goals are achieved by two 
components that reside at the core of a phenomenon-aware 
system: the Phenomenon Detection and Tracking (PDT) module 
and the phenomenon-aware optimizer, respectively.  
The PDT module continuously monitors correlation amongst 
readings that are arriving from near-by sensors. The phenomenon-

aware optimizer then assesses the interest of a user-given query in 
all detected phenomena. It ensures that a query is remotely 
deployed over (and only over) the sensors that participate in 
phenomenon that the query is interested. 

In most cases, efficiency is achieved because the number of 
sensors that participate in various phenomena is significantly less 
than the total number of sensors. Also, the number of phenomena 
that are of particular interest to query Qi is a subset of all observed 
phenomena. Therefore, query Qi is deployed only over a small 
subset of sensors thereby reducing the number of queries being 
processed by each sensor increasing throughput. 

The PDT module has been presented in literature in [1][3][4], 
while phenomenon-aware query optimization has been presented 
in [2]. Currently, all previously conducted research assumes a 

single-attribute sensor schema, where sensors read single value 
types, e.g., temperature sensors, light intensity sensors, etc. This 
remains true even if the sensor's schema is a multi-attribute 
schema. This severely limits the applicability of phenomenon 
aware query processors. 

In this paper, we alleviate this problem by proposing a 
phenomenon aware query processing system that can handle 
sensors that generate multi-attribute readings, where phenomena 
may develop across some or all of the attributes. Meanwhile, 
there are hundreds or thousands of standing queries that are 
featured by conjunctive predicates over the values of some or all 

of these attributes. The naive approach is to deploy n independent 
PDT systems, one per attribute (or dimension). Then, the 
phenomenon-aware query optimizer deploys query Qi over sensor 
Sj if there is a consensus among the all dimensions, that sensor Sj 
is of interest to query Qi. Note that on one hand, each monitored 
dimension incurs some cost in the PDT process while on the other 
hand; it results in early filtering of some sensors that seem 
irrelevant to query Qi. The challenge then is to find the right set of 

dimensions that balance between the PDT cost and the gained 
reduction in the query deployment map. 

Our contributions can be summarized as follows: 

1. We enhance phenomenon-aware query processors with the 
ability to detect phenomena across multiple dimensions. 

2. We present a two-step dimensionality reduction technique. 

The first step filters-out the dimensions where no interesting 
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phenomena are detected and the second step then eliminates 
functionally dependent dimensions. 

3. We further extend the multi-dimensional PDT and make it 
dynamic such that it can handle behavioral changes in the 
streaming environment by continuously adjusting the 

monitored set of dimensions. Dimensions are added and 
removed dynamically to balance between the cost of 
phenomenon detection across multiple dimensions and 
gained benefit of deploying queries over smaller subsets of 
sensors. 

The remainder of this paper is organized as follows. Section 2 
provides the background on phenomenon-aware systems. Section 
3 outlines the issues of designing multidimensional phenomenon-
aware query processing systems. Section 4 focuses on the 
proposed dimensionality reduction techniques and presents the 
system's ability to be adaptive and responsive to changes in the 

behavior of the underlying stream sources. Section 5 concludes 
the paper. 

2. BACKGROUND  
In this section we present a definition for a phenomenon and 
overview the general architecture of phenomenon-aware systems. 
Then, we discuss the cost-benefits trade-off of such systems. 

A phenomenon takes place only when a set of sensors S in SN 
report similar reading values over a period of time [1], [4]. 
Definition 1 below provides a formal definition of a phenomenon 
that captures the notion of similarity among sensors. The notion of 

similarity has been extensively studied by several research groups, 
yet under different terminologies, e.g., phenomena, isobars, 
homogenous regions, deformable 2D objects, etc 
(][,[7],[8],[9],[10],[11]).  

Definition 1 A phenomenon Pτ at time instant τ is a binary 

tuple (Rτ ,Bw), where Rτ is the bounding region of phenomenon Pτ 

at time instant τ and Bw is the representative behavior of 

phenomenon Pτ over the most recent time window of size w, S.T.  

stream Si Є Rτ , Prob(|Bw (Si) − Bw| ≥ ε) ≤ α. 

Based on Definition 1, a phenomenon has to be associated with a 
time instant τ because a phenomenon may change its location (Rτ) 
over time. Also, the representative behavior of a phenomenon Bw 
is captured over a window of time (w) to ensure its persistency 
and to avoid the effect of noise. A stream source Si that lies in the 
phenomenon region Rτ should report a behavior (Bw(Si)) that is 

similar to the phenomenon representative behavior Bw with high 

probability (i.e., Prob(|Bw (Si) − Bw| ≥ ε) ≤ α). Bw, the 

phenomenon representative behavior, captures the intrinsic 
features of the underlying phenomenon, e.g., values, frequencies, 
and trends of tuples contributing to the phenomenon. 

Figure 1 illustrates the architecture of phenomenon-aware 
systems. Phenomenon-aware systems receive, as input, a set of 

phenomenon definitions. These definitions are registered and 
stored in a special system catalog called phenomenon definition 
catalog. The continuous PDT query is distributed over the sensor 
network to be executed in-network. The outcome of this query is a 
set of detected phenomenon on the format of specified by 
Definition 1. The detection algorithms, both the centralized and 
distributed versions, are presented in [3].  

The phenomenon-aware optimizer assesses the similarity between 
the expected query result and the phenomena stored in the 
detected phenomenon catalog. The optimizer binds each query to 
a subset of the detected phenomena that are believed to contain 

sensor readings of interest to the query. Equivalently, the 
optimizer binds each query to (and only to) the sensors that 
participate in the query's subset of interesting phenomena. These 
selected sensors are termed the query's working set of sensors. 
Then, the query dispatcher deploys each query remotely to (and 

only to) the sensors that belong to the query's working set, and 
hence, achieves an efficient query deployment map. The 
phenomenon-aware query processing has been implemented in the 
context of the Nile [8] data stream management system developed 
at Purdue University. 

 

Figure 1. Architecture of a phenomenon-aware system. 

3. MULTI-DIMENSIONAL 

PHENOMENON-AWARE QUERY 

PROCESSING  
For better understanding of the multi-dimensional phenomenon-
aware system and to build the right expectations for the 
performance of such systems, we devote this section to formalize 
the expected behavior of the system in terms of processing cost 
and the output and term this as the system throughput. Table 1 
provides a summary for the symbols used in these costing 
equations. 

Table 1. Summary of the costing formula symbols. 

nd Number of PDT monitored dimensions 

nq Number of standing queries at the sensor 

ninput Number of input events 

Tacquisition Acquisition time: total time taken to acquire ninput 
events from the environment and enqueue them at the 
sensor's input buffers 

Tprocessing Processing time: total time taken to process ninput 
events for nq standing queries 

tprocessing Processing time for a single tuple per single query 

TPDT The cost of a single PDT measured in time units 

Seli Selectivity of query number i 

    (1) 

    (2) 

    (3) 

 (4) 



  (5) 

We differentiate amongst three notions of throughput: (1) The 
acquisition throughput, which is the total number of tuples 
acquired by the sensor per time unit (Equation 1). (2) The input 
throughput, which is the acquisition throughput multiplied by the 
number of standing queries (Equation 2). The input throughput 
represents the total number of tuples that need to be processed by 
the sensor's query processor. (3) The output throughput, which is 
the number of output tuples coming out of the sensor's query 

processor. Equation 3 shows that the output throughput equals 
number of input events (after imposing the selectivity of each 
standing query) divided by the total time (acquisition time and 
processing time). Higher output throughput indicates that the 
sensor's processing cycles are invested efficiently to direct input 
tuples to the right queries. Equation 4 captures the processing time 
as: time spent in queries and time spent in the PDT modules, 
which is considered an overhead for phenomenon-aware query 

processors. Substituting the Tprocessing in equation 3, we get 
equation 5. 

       (6) 

       (7) 

Equation 6 and 7 show that the number of standing queries per 
sensors goes down as we increase the number of monitored PDT 
dimensions. Selecting the right set of monitored dimensions has a 
significant impact on the output throughput. Section 4 focuses on 

selecting the right set of dimensions to monitor the appearance 
and disappearance of phenomena. 

4. DIMENSIONALITY REDUCTION  
The efficiency of a multi-dimensional phenomenon-aware system 
relies on the careful choice of the monitored dimension set: (1) 
how many dimensions to monitor and (2) which dimensions out of 
the full set of dimensions to select. In this section, we address the 
choice of the monitored dimension set (MDS) as follows: 

 Step1: Given a MDS of size nd, what is the optimal choice of 

another MDS' of size nd -1 

 Step 2: Given an initial MDS of size nd.initial, what is the 

optimal choice of a desired MDS of size nd.desired 

Step 1 is a single step dimensionality reduction process that 
reduces nd one dimension at a time. Step 2 gives the stopping 
criterion of where to stop the dimensionality reduction process. 
The remainder of this section presents two algorithms to perform 

step 1. Section 4.1 presents an algorithm that eliminates 
dimensions with no (or "few") phenomena that are of interest to 
standing queries and introduces a concrete measure for what we 
mean by "few" phenomena. Section 4.2 eliminates dimensions 
that are functionally dependent on other dimensions. Section 4.3 
presents the stopping criterion for the dimensionality reduction 
process. 

4.1 Eliminating dimensions with no 

phenomena 
Running the PDT modules on dimensions that have no (or few) 
phenomena incur additional overhead on the sensor's CPU without 
any significant reduction in the query deployment map. We 
quantify the effectiveness of running a PDT module on a given 

dimension in terms of the sensor's expected throughput. We make 

use of two input parameters that are computed continuously by the 
PDT module: 

 Sensor Participation Ratio (SPR): the average number of 

phenomena a single sensor participates in divided by the total 
number of phenomena. 

 Tuple Participation Ratio (TPR): the average number of 

tuples that participate in a phenomenon divided by the total 
number of tuples. 

Also, based on the systems workload, we assume the availability 
of the following parameters: 

 Query-Per-Phenomenon (QPP): the average of number of 
queries interested in each given phenomenon.  

 Phenomenon-Per-Query (PPQ): the average of number of 
phenomena that each query is interested in. 

SPR quantifies the phenomena a sensor will be participating in, 
while QPR represents how many query are interested in each 
phenomenon. The product of SPR and QPR gives us the expected 
number of queries that are expected to run on a single sensor. 
Thus, 

      (8) 

The expected selectivity of each query is the number of 

phenomena that are of interest to the query multiplied by average 
percentage of tuples that participate in a phenomenon. 

      (9) 

We substitute for nq and Seli using equations (8) and (9) in 
equation (5) to evaluate the expected throughput for each 
dimension. Then, we eliminate the dimension with the least 

expected throughput. Note that for the correctness of the equations 
above, there are two implicit assumptions: (1) Assume that sets of 
queries that are interested in phenomenoni and phenomenonj, 
respectively, are disjoint. This assumption allows us to assume 
that the overall selectivity is the summation of all individual query 
selectivities. This is not always a valid assumption in practice but 
it simplifies the model without much distortion to the expected 
behavior. Accounting for overlap in the query's interesting set of 
phenomena is possible and is omitted for brevity. (2) Assume that 

every query is interested in one or more phenomena. This allows 
us to exclude the cases where some queries are interested in 
sensor values that are not detected to be part of any phenomena 
since such queries will typically be deployed over all sensors 
anyway. 

4.2 Eliminating functionally dependent 

dimensions 
Generally speaking, in multi-attribute sensors, the trend of one 
attribute readings is related to the trend of another attribute 
reading by a functional correlation F (i.e., Attr1.value = 
F(Attr2.value)). Such correlations have been previously exploited 
to develop model based approximate query processors [14]. For 
simplicity, we limit the correlation function F to monitor 

correlations to follow a linear relationship on the form of: 
 , where a, b are constants.  

We assume that linear correlation is sufficient for a wide range of 
applications. However, extending the model to higher orders of 
correlation is also straightforward. Since, deriving the functional 
dependence between attributes is not the focus of this paper, we 
assume that if such dependencies exist they can be identified and 
expressed within the PDT process. In the remainder of this 
section, we answer two interesting questions: First, given two 



correlated dimensions, which dimension is to be removed to 
increase efficiency? Second, given that we removed the 
dimension Attr1 (say) which is correlated with Attr1, how the 
phenomenon-aware query optimizer could use Attr1 to filter the 
query predicates against Attr2.  

 

Figure 2. Transforming predicates across correlated 
dimensions. 

Between two correlated dimensions, we eliminate one dimension 
or the other based on the throughput equation (Equation 5). We 
evaluate the throughput of the system assuming that Attr1 has been 
removed. We repeat the throughput evaluation assuming that Attr2 
has been removed. Then, we decide to eliminate the attribute 
whose removal increases the throughput the most. In other words 
we remove the dimension whose phenomenon detection cost is 

higher, or the dimension with tuples that satisfy fewer query 
predicates. 

Given a query predicate on Attr1 on the form of Attr1.ValueLeft< x 
< Attr1.valueRight, where  

and where Attr1 has been eliminated from the system. Figure 2 
shows that the predicates can be transformed to the other 
dimension. Then, the query interest in the detected phenomena is 
carried over to the retained dimension.  

 

4.3 The stopping criterion for dimensionality 

reduction 
Unfortunately, it is not trivial to correlate all dimensions with 
each other leading to an optimal set. Hence we suggest the 
following strategy to determine the stopping criterion for 
determining the optimal size of the monitored set.  

Step 1: Start with d dimensions. Measure the throughput in 
Equation 5. 

Step 2: Reduce one dimension (dnew=d-1) where no phenomena 
are found or where correlation is detected. Measure the 
throughput again.  

Step 3: If the 

 , then we stop iterating, otherwise perform step 2 
again.  

This strategy is easy to implement and meets the needs of 
incrementally reducing the dimension set.  

5. CONCLUSION 
In a geographically distributed sensor network, processes that 
exhibit similarity in behavior over time are termed as phenomena. 

We can obtain significant efficiency gains by developing systems 
capable of detecting and tracking phenomena occurring in 
multiple dimensions and deploying queries intelligently to run on 
limited nodes that participate in the phenomenon of interest. 

Moreover, functional correlations between dimensions can be 
exploited to further improve the performance of such query 
processors. 

In this paper, we presented a novel n-dimensional Phenomenon 
Detection and Tracking mechanism that reduces both the number 
of sensors and the number of dimensions over n-ary sensor 
readings on which a continuous query is deployed. We performed 

dimensionality reduction from n to n' by dropping dimensions 
where no meaningful phenomena were detected. We then reduce 
the dimensionality further, from n' to n'' by detecting various 
forms of functional dependencies amongst the phenomenon 
dimensions. We then enhance the performance of this 
dimensionality reduction by making it an adaptive continuous 
process that dynamically determines the number of monitored 
dimensions. We addressed the design issues for each of these 
advances and developed the metrics that can be used to judge the 
utility of the proposed system.  
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